
COMPSCI 732 §9. MaramaDSL 1

MaramaDSL
Based on Karen Li research proposal (presentation) at VASE workshop, ASE 09

Aim of section:
Examine a new DSVL meta tool platform

Currently as an extension to Microsoft DSL
Tools

Contents
Design-for-reuse and design-by-reuse via
patterns
Pattern specification in meta model

Structural vs. behavioural
DSVL pattern examples

COMPSCI 732 §9. MaramaDSL 2

Comparing
Marama and MaramaDSL

Similarity
Raising the level of abstraction of knowledge representations in
domain-specific software applications
Visually specifying DSVL meta models, notations, views, constraints,
critics, event handlers, model transformation ...
Automatically generating DSVL environments based on specifications

Difference
Marama generates DSVL environments from MULTIPLE integrated
meta-DSVL based specification models
MaramaDSL aims to generate DSVL environments from a SINGLE
pattern language model (with linked structural and behavioural
perspectives)

Augmenting DSVL meta tools with pattern specification,
instantiation and reuse

COMPSCI 732 §9. MaramaDSL 3

Motivation
Common recurring problems and solutions exist in DSVLs

Model element composibility, cardinality, mutability, multiple
views and their interoperability
Model organisation, constraints and metrics, value dependency,
queries and workflows, diagram layout management,
importing/exporting, tracing and debugging

Design-for-reuse and design-by-reuse meta patterns

The need for a pattern modelling language in parallel
with DSVL meta model

The need for pattern instantiation tool support (should
help with creation) for DSVL model instances

High level pattern-oriented cross-domain reuse
optimistic/optimal approach to remove barriers to use

COMPSCI 732 §9. MaramaDSL 4

MaramaDSL Architecture
Microsoft DSL Tools based
meta tool

Complements DSL Designer
with multiple designer
views, framework code and
code generators

Current integration via
importing DSL Designer
models and generating code
back to DSL projects

Working together with DSL
Tools integrating pattern
specification and usage into
DSVL development process

(s)

COMPSCI 732 §9. MaramaDSL 5

Domain Model View
Displays a DSVL meta model (including defined domain
classes, relationships, shapes, connectors and mappings),
imported from a DslDefinition.dsl

COMPSCI 732 §9. MaramaDSL 6

Structural pattern specification
Via a generic entity-relationship based language

(1)

(2)

(3)

(4)

(5)

COMPSCI 732 §9. MaramaDSL 7

Structural pattern specification
Pattern modelling layer

1) Structural pattern model
Categories: design pattern, multi-view, model constraint, model integration...

2) Participant
Types: domain class, domain relationship, domain property, shape, connector, map...

3) Participant relationship, source and target roles
Types: isSubTypeOf, contains, references...

4) Dimension
Complements participant relationships with explicit multi-dimensional participant role
cardinality constraints

5) Constraint
Similar to MaramaTatau; can be added to all pattern elements

Domain model layer
Filterable domain model elements imported from a DslDefinition.dsl

Cross layer
Domain context bindings of pattern participants and relationships; integration of a
pattern specification with a DSVL meta model

COMPSCI 732 §9. MaramaDSL 8

Pattern specification reuse
Design-for-reuse

A pattern can be saved context-free (with all the
context references removed), appearing in the Patterns
Explorer Tree

Design-by-reuse
A pattern from the Patterns Explorer Tree can be
accessed and used on a different DSVL meta model (via
a simple drag-drop and followed by context
configurations)

Direct application on a domain model
With some adaptation add/modify/remove
participants or relationships at a DSVL client

COMPSCI 732 §9. MaramaDSL 9

Structural pattern instantiation
Context bindings at meta model level

Pattern instantiations at instance level
Selection of DSVL model instance elements as runtime
pattern participant members
An auxiliary Pattern Instantiation View (based on
pattern specification reuse design level abstraction)

Accepts direct input of pattern participant
members
Allows cross-diagram drag-drop from DSVL model
instance

Has generative creation or modification effects on
DSVL model instance

COMPSCI 732 §9. MaramaDSL 10

Abstract Factory specification on
UML meta model

COMPSCI 732 §9. MaramaDSL 11

Abstract Factory instantiation on
UML model instance

COMPSCI 732 §9. MaramaDSL 12

Behavioural pattern specification
Currently via a generic dataflow based DSVL query language

CSI Academy project (Brian Webb and Tony Ly)

(1)

(2)

(3)

(4)

(5)1) Query model
2) Query element

with ports
3) Dataflow
4) Patterns explorer

tree
5) Context binding

COMPSCI 732 §9. MaramaDSL 13

What behavioural patterns
Visual analytics tasks in DSVL

Retrieving model data of interest to create visualisations
Detecting and removing conflicts
Refactoring

Recurring querying need - Need a query language at appropriate
abstractions

SQL lacks appropriate abstraction for manipulating DSVL model
elements
OCL, Eclipse Query Model etc require too much of DSVL end
users to learn, understand and code
Existing visual query languages address only basic selections

COMPSCI 732 §9. MaramaDSL 14

Query pattern specification
Query modelling layer

Query model
Query element: SELECT, FILTER, UPDATE, INSERT
and DELETE
Result element
Custom value
Dataflow

Domain model layer
Shared btw structural and behavioural pattern
modelling views

Cross layer
Domain context bindings to query components

COMPSCI 732 §9. MaramaDSL 15

Our approach to development
Four steps:
1) a bottom up development of typical query (visual

analytics) examples
2) examination of the implemented code - largely

domain-specific, with much repeated task logic
3) use of reflective and refactoring techniques to

-
vocabulary for simpler query composition

4) visual language design based on this vocabulary

COMPSCI 732 §9. MaramaDSL 16

The vocabulary
A set of querying building blocks

Of SELECT, FILTER, UPDATE, INSERT and DELETE
types, to retrieve data, set filtering criteria, and alter
model/view elements

E.g. SelectAllModelElements, SelectChildren,
FilterType, InsertModelElement, UpdateParent,

Parameterized with query context (models, views, model
elements or visual symbols) and criteria (typed values)
Each has a returning result state as the output, for
display or piping for further query construction

A set for RESULTSET rendering

COMPSCI 732 §9. MaramaDSL 17

Our visual query language
For visual analytics of domain models, for non-programmer
DSVL end users

Represents the generalized query elements, and defines
their interaction

Allows complex queries to be composed from sub queries

Allows queries to be abstracted for ease of reuse and
reconfiguration

Supports user-defined, automatic or self-controlled
interactive query execution

Design rationale -

COMPSCI 732 §9. MaramaDSL 18

Example #1 Select elements of interest

COMPSCI 732 §9. MaramaDSL 19

Example #2 Create visualisation effect

COMPSCI 732 §9. MaramaDSL 20

Example #3 Resolve deletion conflict

COMPSCI 732 §9. MaramaDSL 21

Applying Principle of Cognitive
Integration

An orthogonal domain model layer representation for meta
model integration and easy context binding

COMPSCI 732 §9. MaramaDSL 22

A cognitively manageable number of graphical symbols

But heavy text Dual Coding

Applying Principle of Graphic
Economy

Bad Good

COMPSCI 732 §9. MaramaDSL 23

Applying Principle of Semantic
Transparency

Bad Good

Icons suggest semantics

COMPSCI 732 §9. MaramaDSL 24

Applying Principle of Cognitive Fit
Expert vs. lite view - 2 perspectives/dialects, one detailed
and the other high level

COMPSCI 732 §9. MaramaDSL 25

Applying Principle of Complexity
Management

Query pattern reuse via drag-drop, collapse/expand and
form-based filtering show/hide mechanisms

COMPSCI 732 §9. MaramaDSL 26

Tradeoffs
Graphic Economy to be dominant

in negative Semiotic Clarity

Reduced graphical complexity (Complexity Management) by increasing
Visual Expressiveness, but limited the number of symbols for Graphic
Economy

Heavily relied on text to distinguish query elements

Sufficient visual distance (Perceptual Discriminability) and
expressiveness through multiple channels: shape, icon, colour and

Expressiveness)

We chose to improve effectiveness for novices via Perceptual
Discriminability, Complexity Management, Semantic Transparency,
Graphic Economy and Dual Coding, trading off cognitive effectiveness
for experts.

COMPSCI 732 §9. MaramaDSL 27

Evaluation - cognitive dimensions
Equivalent expressiveness to domain-specific code written with APIs, but a
lower abstraction gradient, augmented understanding, reduced effort, and a
much shallower learning curve via better closeness of mapping

Requires hard mental operations and premature commitment, but adding
abstractions in the form of pre-defined query patterns reduces complexity
and diffuseness

Reduced error proneness, but requires proactive model checking

Allowed progressive evaluation, but requires a compile-and-run cycle for
the generated code

Terse symbols, clear role expressiveness, but with verbose textual labels
for expressing query building blocks

Layout as a secondary notation

Diagram insert viscosity problems occur, and require automatic layout to
mitigate

Hidden dependency and visibility mitigated by juxtaposition of orthogonal
layered views and dual coding of custom values

COMPSCI 732 §9. MaramaDSL 28

Conclusion
Ultimate goal facilitate sharing of design knowledge
among DSVL communities

So plenty of to-dos (your contribution welcome
Summer Scholarship/PG/Hons/Msc projects available

supervised by John and Karen):
Model quality assurance via pattern applications
Pattern validation (completeness, consistency, soundness)
Force analysis/balancing of patterns in Pattern Language
Design decision support via higher level visual metaphor
patterns
Automatic capture of design knowledge
Pattern publish and discovery use semantic web
technologies
...

